首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   8篇
  国内免费   4篇
测绘学   2篇
大气科学   10篇
地球物理   35篇
地质学   39篇
海洋学   9篇
天文学   12篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   9篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1974年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
21.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   
22.
Abstract– The interior texture and chemical and noble gas composition of 99 cosmic spherules collected from the meteorite ice field around the Yamato Mountains in Antarctica were investigated. Their textures were used to classify the spherules into six different types reflecting the degree of heating: 13 were cryptocrystalline, 40 were barred olivine, 3 were porphyritic A, 24 were porphyritic B, 9 were porphyritic C, and 10 were partially melted spherules. While a correlation exists between the type of spherule and its noble gas content, there is no significant correlation between its chemical composition and noble gas content. Fifteen of the spherules still had detectable amounts of extraterrestrial He, and the majority of them had 3He/4He ratios that were close to that of solar wind (SW). The Ne isotopic composition of 28 of the spherules clustered between implantation‐fractionated SW and air. Extraterrestrial Ar, confirmed to be present because it had a 40Ar/36Ar ratio lower than that of terrestrial atmosphere, was found in 35 of the spherules. An enigmatic spherule, labeled M240410, had an extremely high concentration of cosmogenic nuclides. Assuming 4π exposure to galactic and solar cosmic rays as a micrometeoroid and no exposure on the parent body, the cosmic‐ray exposure (CRE) age of 393 Myr could be computed using cosmogenic 21Ne. Under these model assumptions, the inferred age suggests that the particle might have been an Edgeworth‐Kuiper Belt object. Alternatively, if exposure near the surface of its parent body was dominant, the CRE age of 382 Myr can be estimated from the cosmogenic 38Ar using the production rate of the 2π exposure geometry, and implies that the particle may have originated in the mature regolith of an asteroid.  相似文献   
23.
Abstract— We report the first production of non‐mass‐dependently fractionated silicate smokes from the gas phase at room temperature from a stream of silane and/or pentacarbonyl iron in a molecular hydrogen (or helium) flow mixed with molecular oxygen (or nitrous oxide). The smokes were formed at the Goddard Space Flight Center (GSFC) at total pressures of just under 100 Torr in an electrical discharge powered by a Tesla coil, were collected from the surfaces of the copper electrodes after each experiment and sent to the University of California at San Diego (UCSD) for oxygen isotopic analysis. Transmission electron microscopy studies of the smokes show that they grew in the gas phase rather than on the surfaces of the electrodes. We hypothesize at least two types of fractionation processes occurred during formation of the solids: a mass‐dependent process that made isotopically lighter oxides compared to our initial oxygen gas composition followed by a mass‐independent process that produced oxides enriched in 17O and 18O. The maximum Δ17O observed is + 4.7‰ for an iron oxide produced in flowing hydrogen, using O2 as the oxidant. More typical displacements are 1–2‰ above the equilibrium fractionation line. The chemical reaction mechanisms that yield these smokes are still under investigation.  相似文献   
24.
A total of about 1100 well-distributed samples of suspended matter in surface waters off the length of eastern Asia are available. From these samples, 180 were selected for detailed examination of the non-combustible fraction using optical and electron microscopy along with computer methods of particle measurement and counting. The results showed that, generally, all major components of the suspended matter are most abundant in the nearshore belt (combustible fraction, mineral grains of silt size, skeletal debris, and clay minerals), the result of mechanical transport of detrital sediment and chemical transport of nutrients from the land. Mineral grains of silt size average about 2%, skeletal debris plus clay minerals—23%, and combustible organic matter—75% of total sample weights, but the last two categories vary over a wide range depending upon geographical positions of the samples. Most evident is an oceanward decrease in percentage and concentration of the total noncombustible fraction and an oceanward increase in median diameter of the mineral grains.  相似文献   
25.
In the seventeenth century, two tsunamis that were generated by earthquakes on the Kuril–Kamchatka subduction zone inundated the eastern coast of Hokkaido, northern Japan. Stratigraphic evidence for these two tsunamis and related land-level change in coastal Hokkaido consists of two landward-thinning sand layers in the sediments of Lake Tokotan, a coastal lagoon on the Hokkaido coast. The marine origin of these sand layers is indicated by the presence of brackish–marine diatoms. The rarity and high degree of fragmentation of diatom valves suggests that the sands were transported in a short time over a considerable distance. Tsunamis at this site were probably generated by great earthquakes along the Kuril–Kamchatka Trench. Volcanic ash deposits lying just above the sands suggest that tsunamis occurred in the late 17th century. Tsunamis during the historic period are not recorded in Lake Tokotan, which suggests that the sand layers were deposited by tsunamis substantially larger than historic tsunamis.  相似文献   
26.
27.
Rainfall thresholds for shallow landslide initiation were determined for hillslopes with two types of bedrock, permeable sandstone and impermeable mudstone, in the Boso Peninsula, Japan. The pressure‐head response to rainfall was monitored above a slip scarp due to earlier landslides. Multiple regression analysis estimated the rainfall thresholds for landsliding from the relation between the magnitude of the rainfall event and slope instability caused by the increased pressure heads. The thresholds were expressed as critical combinations of rainfall intensity and duration, incorporating the geotechnical properties of the hillslope materials and also the slope hydrological processes. The permeable sandstone hillslope has a greater critical rainfall and hence a longer recurrence interval than the impermeable mudstone hillslope. This implies a lower potential for landsliding in sandstone hillslopes, corresponding to lower landslide activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
28.
29.
Abstract: Possible ore deposition by fluid mixing was preliminarily examined using MIX 99, a FORTRAN program developed for simulating water-rock interactions. We consider mixing of two fluids, the low fO2 and high temperature source fluid and the high fO2 and low temperature seawater. Oxygen fugacity of a mixed fluid formed by titration of seawater into the source fluid gradually decreases with decreasing temperature (model A). Sequential precipitation of ore-forming minerals was examined in this model. On the other hand, simultaneous precipitation of the minerals could be followed by simulation of instantaneous overall mixing of the two fluids (model B). Results of simulation of the both models revealed that a temporal sequence of mineralization observed in the Karuizawa mine, NE Japan, can be formed by model A, while model B is suitable for the mineralization of an active chimney found in the Rainbow hydrothermal area of the Mid-Atlantic Ridge.  相似文献   
30.
We have carried out in situ X-ray diffraction experiments on the FeS–H system up to 16.5 GPa and 1723 K using a Kawai-type multianvil high-pressure apparatus employing synchrotron X-ray radiation. Hydrogen was supplied to FeS from the thermal decomposition of LiAlH4, and FeSHx was formed at high pressures and temperatures. The melting temperature and phase relationships of FeSHx were determined based on in situ powder X-ray diffraction data. The melting temperature of FeSHx was reduced by 150–250 K comparing with that of pure FeS. The hydrogen concentration in FeSHx was determined to be x = 0.2–0.4 just before melting occurred between 3.0 and 16.5 GPa. It is considered that sulfur is the major light element in the core of Ganymede, one of the Galilean satellites of Jupiter. Although the interior of Ganymede is differentiated today, the silicate rock and the iron alloy mixed with H2O, and the iron alloy could react with H2O (as ice or water) or the hydrous silicate before the differentiation occurred in an early period, resulting in a formation of iron hydride. Therefore, Ganymede's core may be composed of an Fe–S–H system. According to our results, hydrogen dissolved in Ganymede's core lowers the melting temperature of the core composition, and so today, the core could have solid FeSHx inner core and liquid FeHx–FeSHx outer core and the present core temperature is considered to be relatively low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号